Epileptiform activity but not synaptic plasticity is blocked by oxidation of NMDA receptors in a chronic model of temporal lobe epilepsy.

نویسندگان

  • O Quesada
  • J C Hirsch
  • H Gozlan
  • Y Ben-Ari
  • C Bernard
چکیده

Simultaneous extracellular recordings were performed in stratum radiatum and stratum pyramidale of hippocampal slices 7 days following unilateral intracerebroventricular injections of kainic acid. In this ex vivo experimental model of human temporal lobe epilepsy, stimulation of the surviving commissural fibres in stratum radiatum produced graded epileptiform activity in the CA1 area. The oxidizing reagent 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) acting at NMDA receptors redox sites decreases NMDA receptor-mediated responses by half and suppresses evoked epileptiform discharges. We have examined the effect of DTNB on NMDA-dependent bidirectional synaptic plasticity and EPSP/spike coupling. DTNB treatment did not prevent either long-term potentiation induced by tetanic stimulation or long-term depression induced by low frequency stimulation of field EPSPs. Application of DTNB alone did not induce EPSP/spike dissociation. However, both high and low frequency stimulations induced EPSP/spike potentiation indicating that neurons had a high probability to discharge in synchrony. These results suggest that oxidizing reagents may provide novel antiepileptic treatments since they decrease NMDA-dependent evoked epileptiform activity but do not interfere with either NMDA-dependent synaptic plasticity or the probability of synchronous discharge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

Involvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex

In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...

متن کامل

AMPA receptors as a molecular target in epilepsy therapy.

Epileptic seizures occur as a result of episodic abnormal synchronous discharges in cerebral neuronal networks. Although a variety of non-conventional mechanisms may play a role in epileptic synchronization, cascading excitation within networks of synaptically connected excitatory glutamatergic neurons is a classical mechanism. As is the case throughout the central nervous system, fast synaptic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Epilepsy research

دوره 26 2  شماره 

صفحات  -

تاریخ انتشار 1997